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ABSTRACT

The main intention of this paper is to extend #sutt of Piri and Kunam [1] on a complete orderextria space.
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INTRODUCTION

One of the most important result of the functioaahlysis is the Banach Contraction mapping. Variotier
generalization can be found out in the recent yelarghe year 2012, Wardowski [4] have introducedeav type of
contractions calle#- contraction. Recently in the year 2014 Piri, Kumam, P [1] have extended the result of Wardowski
[4] by considering the class of function satisfyidifferent properties. In the same paper Piri, kumam, P. [1] have
defined the new type of contraction knownFaSuzuki contraction. Then in the year 2015, Karapik., A.K,Marwan.,
Piri, H., O'Regan, D., [2] have extended the newsian using thd- Suzuki contraction of Piri, H., Kumam, P. [1]. Btk
points for the ordered metric spaces udhtgntraction have been obtained by Cosentino ana &} in the year 2014.

The present paper focuses on bringing the extemelesibns of--Suzuki contraction on ordered metric spaces.

Definition 1: [1] Let (X,d) be a metric space. A mappiﬂ-g: X — Xis said to be aR-Suzuki contraction if

X,y X TX#Ty

there exists! ~ Osuch that for all with

SA0mI<al0n) o pamy) < Fdxy)

WhereF satisfies following conditions:

X, YOR, x<y,F(X)<F(y).

(F1) F is strictly increasing,.e. for all such that
(F2) infF = —o0
(F3) F is continuous 0|(O' %) .

Let U denote the class of functions satisfying (F1), &X)I(F3).

Theorem 1 [1] Let (X,d) be a complete metric space ahd X = X pe anF-Suzuki contraction. Thef

0 n 0
has a unique fixed point U X and for everyx0 Ux the sequenCt{;T XO}n=1 converges t&¢ .
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The extended form of the above result can alsoobed in the paper [2] where the authors have défihe

conditionallyF-contraction of type (A) on a metric-like space.

Secelean [3] have proved the following lemma

00

be an increasing mapping aig“}nﬂ be a sequence of positive real numbers.

Lemma 1: [3] Let FIR -R

Then the following assertions hold:

lim F(a,) = - lim (a,)=0

o If noe ,then n-=

_ lim(a,)=0 lim F(a,) =-
e JfinfF =-00gnd n-w , then n-« )

Definition 2: [2] Let (X,d) be a metric-like space. A mappin-5 : X - Xis said to be conditionally-

X,y X TX#Ty

contraction of type (A) if there exis® U Uand? > Osuch that for all with

290 A60) _ s EariTy)) < F( (o)

M; (X, y) = max{d (X,y),d(x,Tx),d(y,Ty), d(x,Ty) +d(Tx, y)}

Where 4

Theorem 2 [2] Let (X,d) be a metric-like space. f is aconditionallyF-contraction of type (A), thef has a
o
fixed pointX U X

The present paper extends the above result indarext metric spaces.

Definition 3: Let (X,<) be apartially ordered set afd: X - X g mapping. We say tha@itis non decreasing

it for % YU X

Xsy=TxsTy
MAIN RESULTS

Theorem 3: Let(x’s) be apartially ordered set and suppose that these a&metricd in X such that(x ,d) is a

complete metric space. Ldt: X - Xpea non-decreasing mapping such that if theresekis Uand? > Osuch that

X,y X TX#Ty

for all with

ST <A _ 4 p gy < () "

’

o« PUN

< O
Wher . If there existsxO Ux with %o _TXO thenT has a fixed point OX,
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0

Proof; Choosex0 UX and define a sequeni%(“}"ﬂin the following way

= <
If %o TXO then there is nothing to prove. §E9 TXO andT is non decreasing mapping we obtain

X <TX, ST?X, ST3%, ST% <o ST, ST™X, S v O

00

XO. Consequently the sequenc{zx“}nﬂis non-decreasing.We have

d(x,, Tx,) >0

Put Xooy = TX, =T(T"X) =T

X, € X

= = <
n+l TX”, if %n TX” then we have a fixed point so we assume t)lgﬁat TX” ie.,

<TP
sinceT is non-decreasing mappin>g(f1 T, for any p,nUN _

. Now

So we have

%d(xn,Tpxn) <d(x,,T"x,)

So from (1) we have,

r+F(d(m, T(rPx,)) < Fldx,. T°x,))
= F(d(m,, T(T?x,)) < Fld(x, 7%, ) -7 @

= F(d(xnﬂ’ Xn+p+1)))S F(d(Xn,Xn+p))— T '

< Fldbos %) -2

F(d

IN

(Xn 29 Xn+p 2)» 32—_

IN

F(d(xn -3 Xn+p 3))) T_

F( (xO X ))) (n+1r.

So we have

F(d(m,, TTPx,)))< Fld(x,x,))- (n +1)7
F A0 X)) < Fldlx0, %, )= (n+ D)7
F 8l X)) Fldlinx, )

I|m F( ( m+p))):_°°
M- co , 3)
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Therefore from lemma 1 we get,

lim d(Xp, Xy )= 0
n | (4)

00

Which shows that the sequen{:)é“}n=lis a Cauchy sequence Since X is a complete mgieces there exists

XLO X sych that

limd(x,.x)=0
o | ©
Since, X”+1<X”+P, = A (X5, X0 <d(X0, XE) = d(T X, X0 <d(Tx,,x0) _ (6)

Now we claim that

%d(xn,T Px,) <d(x,,x0 %d(Txn,T P(Tx,)) <d(Tx,,xD

If then there exists somB N such that

1d(xn,T”xn) > d(x,,x0 ld(l'xn,Tp(Txn)) > d(Tx,,x0)
2 and2 . (8)

= 2d(x,, XD <d(x,,T"x, ) <d(x,,xD+d(xOT"x,) <d(x,,x0 +d(xgTx,) _

= d(xC x,) <d(xC,TX,)

9)

Now from (7) and (8) we get,
=d(xgx,) <d(xdTx,) < 1d(Txn ,TP(TX,)).

2 (10)
Again from (2) sinc€ >0, we get,
Fd(rx, T(TPx,)) < Fld(x, T"x,))
Also from (F1),
d(Txn,T(Tpxn))< d(xn,Tpxn)_ (11)

Therefore it follows from (11), (10), (8), and (6).

d(Txn,T(T an))< d(xn,T an)

< d(xn,xE))+d(xDTpxn)
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<%d(Txn,T P (Tx,)) +d(x0Tx,)

<%d(Txn ,TP(TX,)) +%d(Txn TP (TX,))

<d(Tx,, T?(Tx,))

Which is a contradiction Hence (7) holds so fromtfpart of (7) we have

r+F(d(Tx,,TxC)) < F(d(x,, D))

Then by continuity ofand using (5), and (F2)we get,

Li[r; F(d(Tx,,Tx0) < Fuimd(xn,xt))

n-oo

lim F(d(Tx,, Tx0) < F(0) =inf F

lim F(d(Tx,, Tx0) = -

n-oo

Therefore from lemma 1 we get,
limd(Tx,, Tx)=0

[N

Hence, we have

d(xJTx0) = Lirrld(xnﬂ,Tx 0= Lirr;d(Txn Tx)=0

Which shows tha¥* Lis the fixed point of T.

From second part of (7) we have,

T+ F(d(szn,Tx D))s F(d(Tx,,x0) = F(d(x,.,,x0)
Similarly, we get

lim F(d(szn,Tx D))= el

n- oo
Using lemma 1 we obtain

lim d(T?x,, Tx0=0

n-oo

Therefore
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d(xgTx0) = lim d(x,,,, Tx) = lim d(szn,TxE): 0

Which shows tha®* Lis the fixed point of T.

Uniqueness:we now show that the fixed point is unique. If sogp that there are two distinct fixed pointsTof

XCand YL thatishXC =X # YL =TyL d(xt,yD) >0

, then . So, we have

%d(XDT Px0) <d(xgdyD

Then for the assumption of the theorem , we obtain
FlaxayD)=Fla(mxaTryd)<r+Fa(maTryd)< Fd(xayD)
Which is a contradiction

Remark: If P~ 1then we get the version Bfsuzuki contraction as presented by Piri, H., KumBrfi].
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